Community aware random walk for network embedding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Community aware random walk for network embedding

Social network analysis provides meaningful information about behavior of network members that can be used for diverse applications such as classification, link prediction. However, network analysis is computationally expensive because of feature learning for different applications. In recent years, many researches have focused on feature learning methods in social networks. Network embedding r...

متن کامل

Random Walk Features for Network-aware Topic Models

Topic Models such as Latent Dirichlet Allocation (LDA) have been successfully applied as a data analysis and dimensionality reduction tool. With the emergence of social networks, many datasets are available in the form of a network with typed nodes (documents, authors, URLs, publication dates, . . . ) and edges (authorship, citation, friendship, . . . ). We propose a network-aware topic model t...

متن کامل

A Topology-Aware Random Walk

When a graph can be decomposed into clusters of well connected subgraphs, it is possible to speed up random walks taking advantage of the topology of the graph. In this work, a new random walk scheme is introduced and a condition is given when the new random walk performs better than the Metropolis algorithm.

متن کامل

Graph Embedding through Random Walk for Shortest Paths Problems

We present a new probabilistic technique of embedding graphs in Z, the d-dimensional integer lattice, in order to find the shortest paths and shortest distances between pairs of nodes. In our method the nodes of a breath first search (BFS) tree, starting at a particular node, are labeled as the sites found by a branching random walk on Z. After describing a greedy algorithm for routing (distanc...

متن کامل

Community Preserving Network Embedding

Network embedding, aiming to learn the low-dimensional representations of nodes in networks, is of paramount importance in many real applications. One basic requirement of network embedding is to preserve the structure and inherent properties of the networks. While previous network embedding methods primarily preserve the microscopic structure, such as the firstand second-order proximities of n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge-Based Systems

سال: 2018

ISSN: 0950-7051

DOI: 10.1016/j.knosys.2018.02.028